DS105A -
Data for

Data
Science

Week 02

Python Fundamentals,

Collections and First Steps
with APls

Dr Jon Cardoso-Silva
LSE Data Science Institute

~, 09 Oct 2025

1/34

https://jonjoncardoso.github.io/
https://lse.ac.uk/dsi

2/34

DataQuest Debrief &
Markdown

Let’s start by seeing where you are with the DataQuest lessons
and then connect them to what you experienced in Week 0O1.

3/34

Quick Completion Poll

Through Mentimeter we'll see how far you got with the -7 W02 Formative
DataQuest lessons:

e Programming in Python /I /X
e Programming Python Variables /I /X

e Python Data Types: Integers, Floats, Strings @/ I / X
e Python Lists @/ I / X

. You feel behind tomorrow in the lab if you haven’t done all
of thesel.

ahdr
LSE DS105A (2025/26) @

Markdown Concepts

We use Markdown to format s Slack messages, in our € Jupyter Notebooks, these slides, and all the course

webpages you see on Moodle.

If you type this: You get this:

This is a s*xxboldxx text. ThiS is a bold text.
This is an _italic_ text.
This is an italic text.

[This is a link](https://1lse.ac.uk/dsi)

This is a link

“print("Hello, World!")"

“**python print("Hello, World!")

This is a code block
print("Hello, World!")

This is a code block
print("Hello, World!")

The code blocks are just to represent code, not to execute it.

4734

https://lse.ac.uk/dsi

5/34

Markdown Concepts (Headings)

There are also headings in Markdown. They help structure content — not just make text big!
(Those won't work in Slack, by the way:.)

If you type this: You get this:
Title (H1) Title (H].)

Section (H2)

Section (H2)

Sub-section (H3)

#HHH# Sub—sub-section (H4) Sub-section (H3)
Sub-sub-section (H4)

. Do not use # just to make text bigger! It’'s not what it represents.
Use it to create hierarchical demarcations of sections instead.

P
LSE DS105A (2025/26) g

6/34

Group Discussion: DataQuest Concepts

Let’s connect what you learned in DataQuest to the data work you’ve done. Form groups of 3-4 people
around you.

Your task (5 minutes total):
1. Share your “aha moment” (2 minutes): Each person briefly shares one concept from

DataQuest that clicked for them this week. Could be variables, data types, lists, or anything
else.

2. Connect to Week 01 (2 minutes): Discuss together: How might these Python concepts relate
to the DataFrame work you did last week?

3. Pick one insight (1 minute): Choose one connection your group found interesting to share in
Slack.

« Post in Slack: Drop your group’s key insight in the thread on the #social channel. I'll
synthesise common patterns in a moment.

ahdr
LSE DS105A (2025/26) @

7134

Binary & Memory
Foundations

To understand why my_1ist [@] works, we need to understand
how computers actually think.

8 /34

Computers Only Understand Os and 1s

Numbers, text, images, and sounds are all stored as sequences of Os and 1sin
your computer’s memory. Each O or 1is called a bit.

Think of a bit as a tiny box:

ahdr
LSE DS105A (2025/26) @

9/34

Computers Only Understand Os and 1s

Numbers, text, images, and sounds are all stored as sequences of Os and 1sin
your computer’s memory. Each O or 1is called a bit.

Think of a bit as a tiny box:

0 < a bit can have a value of O

ahdr
LSE DS105A (2025/26) @

10/ 34

Computers Only Understand Os and 1s

Numbers, text, images, and sounds are all stored as sequences of Os and 1sin
your computer’s memory. Each O or 1is called a bit.

Think of a bit as a tiny box:
< OR it can have a value of 1

but nothing else!

ahdr
LSE DS105A (2025/26) g

How Numbers are Stored

With more bits, we can represent more numbers. Here’'s how 4 bits can represent 16 different numbers:

— 0

U

0
.
.*3
.

BEECEEEE

o) | Neol |l el B K=k i el i Reol B Rl B Nes)

I*7

Connection to the DataQuest lessons (WO02 Practice): when you create an integer in Python, you
are telling your computer to reserve a fixed-size space in memory for a series of Os and 1s.

LSE DS105A (2025/26)

AEEEEEEE
-1-18]8] -1 [8lE
=

— 14

— 15

e

http://localhost:8888/2025-2026/autumn-term/practice/week02.html

12/ 34

The ASCII Table: How Text Becomes Binary

In the early days of computing, text was represented using the ASCII table.

ASCIl uses 7-8 bits to represent each individual character. Here are some
examples:

The letter ‘A’ is represented The letter ‘a’ (lowercase) is The linebreak character ‘\n’
by the number 65 encoded represented by the number is represented by the

in binary as: 97 encoded in binary as: number 10 encoded in binary

ofoJo o fNo]o

LSE DS105A (2025/260

Click here to see the full table. Modern Pvthon uses UTF-8. which includes emoiis! &2 *

https://www.ascii-code.com/

13 /34

Variables as Memory Addresses

When you create a variable in Python, you're not creating a container for data. You're creating a reference (a
pointer) to a location in memory where the data lives.

temperature = 25.3 |)
Memory Addresses (simplified):
What actually happens: Address Variable Value
1. Python converts 25. 3 to binary 0x1000 temperature - 25.3
2. Finds available space in memory
3. Stores the binary representation there 0x1048 temperature - 28.7
4. Creates label temperature pointing to N J

that location You can try it yourself:

When you reassign: temperature = 25.3
print(id(temperature)) # Memory address
temperature = 28.7

temperature = 28.7

Python doesn’t change the old value. It print(id(temperature)) # Different addres

stores 28.7 in a new location and updates
the reference LSE DS105A (2025/26) g

14 /34

Data Types and Memory Storage

. Although you can’t change the size of the data types in ‘pure Python’, we will enforce this when we start working
with numpy and pandas in the next few weeks.

Integer Storage: Float Precision:

e int32: Uses 32 bits (4 bytes) Python floats use 64 bits by default.
Can store:-2,147,483,648 to 2,147,483,647 1his is why sometimes:

e int64: Uses 64 bits (8 bytes) 0.1 + 0.2 == 0.3 # False!

Actually gives: 0.30000000000000004
Can store: much larger numbers!

Odly, the binary representation of numbers in
Why this matters: programming isn’t always exact.

A DataFrame with 1 million integers: o _
@ Click here to read more about this.

e 1nt32: ~4 MB of memory
e 1nt64: ~8 MB of memory

Choosing the right type saves memory! . o o0 @

https://0.30000000000000004.com/

15/34

Collections Store References Too

Lists and dictionaries don’t store the actual data. They, too, store references to where the data lives in memory.

temps = [18, 22, 19] Why this matters:
Memory layout: 1. Lists can resize because they just add more
references
temps - [0x2000, 0x2004, 0x2008]
0x2000 18 2. Whep you pass a list to a functic?n, you're
042004 . passing the reference, not copying all the
data
0x2008 19 o _
N) 3. This is why operations on large datasets can
be fast

Collections are containers of references, not
containers of actual values.

Why bother? Understanding this memory model helps you understand why some operations are fast (just changing a
reference) and others are slow (copying actual data), and why some data structures work better for certain tasks.

ahdr
LSE DS105A (2025/26) @

16:40 -17:05

Collections In Practice

Most of the time in data science, we work with collections of
values.

In ‘pure Python’, the two most important collections are lists and
dictionaries and they are the foundation for the more complex
data structures we will learn about later in Weeks 03 and 04.

LSE DS105A (2025/26)

16 /34

The Problem with Separate Lists

Think about the data you worked with in the (-2 WO1 Practice) at the end. You saw DataFrames (tables) with multiple
columns. What if we tried to store that data using separate lists?

Weather data as separate lists .y)
dates = ['2025-10-13', '2025-10-14', '2025-10-15'] 1hree critical problems:

temps = [18, 22, 19]

conditions = ['cloudy', 'sunny', 'rainy'] 1. Coordination nightmare: If you sort temps,

To get info about the first day: the other lists don’t follow. Your data is now

print(f'Date: {dates[@]}") corrupted.

print(f"Temp: {temps[0@]}°C")]] _ _

print(f"Condition: {conditions[@]}") 2. Fragile connections: The relationship
between dates[0], temps[0@], and

This is why we need better data conditions[@] exists only in your mind,

structures. More complex not in the code.

structures will let us connect
related data with meaningful
names instead of fragile positions.

3. Error-prone: Add a temperature but forget
to add a date? Your lists are now different
lengths.

LSE DS105A (2025/26)

17 /34

http://localhost:8888/2025-2026/autumn-term/practice/week01.html

18 /34

Memory: Lists vs Dictionaries

Still, it's important to understand how lists and dictionaries organise those references
differently as these are the foundations for everything that is to come.

Lists: Sequential Memory Dictionaries: Named Memory

Lists store references in order. Python can Dictionaries use a hash table to map keys to
quickly access any position because it knows memory locations. The key becomes a
exactly where each item lives in memory. meaningful label for the data.

temps = [18, 22, 19] weather = {'temp': 18, 'city': 'London'}

Memory: [ref-18, ref-22, ref-19] # Memory: 'temp' - ref-18, ‘'city' - ref-'London'
Fast: Access by position (temps [0]) Fast: Access by name (weather['temp'])
Limitation: No meaningful names Advantage: Self-documenting code

If you want to know more: Python dicts and memory usage

ahdr
LSE DS105A (2025/26) @

https://lerner.co.il/2019/05/12/python-dicts-and-memory-usage/

Lists vs Dictionaries: Concept and Syntax

Most of the data you will work with will already come in a collection, but if you need to create
one, here’s how you do it.

List Dictionary
List of temperatures in Celsius # Dictionary of temperatures
temperatures = [22, 21, 19, 23, 20] weather_data = {'09:00': 22, '12:00': 21, '15:00'
Or Or
temperatures = [weather_data = {
22, '09:00': 22,
21, '12:00': 21,
19, ‘15:00': 19,
23, '18:00': 23,
20 '21:00': 20
] ¥

« You can use multiple lines for readability.

LSE DS105A (2025/26)

19/34

20/ 34

Accessing Elements

Accessing data differs between lists and dictionaries.

List Dictionaries
Accessing the first temperature # Accessing temperature at 12:00
first_temp = temperatures[0] temp_at_noon = weather_datal['12:00']
Accessing the last temperature # Accessing temperature at 18:00
last_temp = temperatures[-1] temp_at_evening = weather_data['18:00']
Lists are indexed by integers, Dictionaries are accessed by keys,
starting at O. not by position.
To get an element, you need to You need to know the key to
know its position in the list. retrieve the value.

ahdr
LSE DS105A (2025/26) @

Dictionary of Lists: The DataFrame Pattern

Let’s see how real weather data might look using a dictionary of lists:

A dictionary of lists (like a DataFrame!)
weekly_weather = {
'date': ['2025-10-13', '2025-10-14', '2025-10-15'],
'temp': [18, 22, 19],
"humidity': [65, 58, 721,
'conditions': ['cloudy', 'sunny', 'rainy']

}

Accessing data - column first, then row

all_temps = weekly_weather['temp'] # Gets [18, 22, 19]

monday_temp = weekly_weather['temp'][0] # Gets 18
tuesday_conditions = weekly_weather['conditions'][1] # Gets 'sunny'

This is very similar to how pandas DataFrames work! Each key is a column
name, and each value is a list of data for that column. Notice the access

pattern:dict['column'] [row] -sameasdf['column'] [@] from Week
O1.

LSE DS105A (2025/26)

21/34

22 /34

Quick Poll: When to Use Each Structure?

Let’s check your understanding. Go to the #social channel on % Slack and vote:

Scenario: You're storing hourly temperature readings for London, and you want to look up the
temperature at a specific time (like “14:00”).

Which structure would you use?

A. A simple list: [18, 22, 19, 23, 20]

B. A dictionary: {'09:00': 18, '12:00': 22, '15:00': 19, ...}
C. Separate lists for times and temperatures

D. A list of dictionaries

ahdr
LSE DS105A (2025/26) @

23 /34

17:05-17:15

After the break:

e Live data collection from APIs

e Converting JSON to Python
dictionaries

e Connecting API data to the
pandas DataFrames you used in
Week 01

‘A
LSE DS105A (2025/26) @

APIs & Live Data Collection

222222222222222222

The Problem with Manual Data Entry

So far, we've created our own lists and dictionaries manually,

mostly to demonstrate the concepts. But in practice, we will
collect it from data sources.

X Problem:
Typing weather data manually is tedious and error-prone.

Solution:

In this course, we will use APIs (Application Programming
Interfaces) to fetch live real data dynamically.

LSE DS105A (2025/26)

25/ 34

26 /34

What is an API?

An APl is like a vending machine:

1. You make a request (insert a coin & press a button).
2. The API processes it (retrieves your snack).

3. You get a response (your snack comes out).

In Python, we use a package called requests to “talk” to APIs.

The requests package does not come pre-installed with Python. You need to install it using pip.

On »{ VS Code, click on the = Menu icon then navigate to Terminal > New Terminal.

A window will pop up at the bottom of the screen.

In the terminal window, type pip install requests and press Enter.

Wait for the installation to complete.

The requests package is now installed and ready to use on Jupyter Notebooks.

ahdr
LSE DS105A (2025/26) @

27 134

The &% Open-Meteo API for Weather Data

Visit Open-Meteo Constructing the Request

& https://open-meteo.com/ import requests

Explore their API url = "https://api.open-meteo.com/v1l/forecast"
documentation. params = {

et e s,

e Request hourly temperature ::22;;1;;..I:Itﬁgﬁ,e,gz;%s;ég;.’.

for London 1

e Receive structured weather
data (it comes back in a -
format called JSON). We now have real-time weather data!

& Let’s inspect the response (live demo).

response = requests.get(url, params=params)

ahdr
LSE DS105A (2025/26) g

https://open-meteo.com/

28 /34

Converting APl Data to a Python Dictionary

The response you get from the APl Now weather_data is a Python dictionary!
IS just pure text, just a string that

_ o We can then access its values just like any other
looks like a Python dictionary.

dictionary:

print(response) weather_data["hourly"] ["temperature_2m"]

« TIP: Just because something looks
like a dictionary or a list, it doesn’t mean
itis.

To convert it into a Python
dictionary, we use the json()
method:

weather_data = response.json()
type(weather_data)

ahdr
LSE DS105A (2025/26) g

Live Demo: Open-Meteo API

Let me show you this APl in action. We'll:

1. Make the request and examine the response structure
2. Extract temperature data into a Python list

3. See how this data could become a pandas DataFrame column

During this demo, think about: How is this different from the clean CSV files you worked with in Week
01?7 What are the advantages and challenges of live data?

LSE DS105A (2025/26)

29 /34

Synthesis & W03 Preview

222222222222222222

31/34

Connecting Dictionaries to DataFrames

Here’s what is coming next. Next week, code-wise, we will be focused on transforming JSON
data into clean and nicely tabular DataFrames.

Your knowledge of dictionaries and lists will be put to the test!

Dictionary structure: DataFrame equivalent:

weather_dict = { import pandas as pd
'time': ['09:00', '12:00', '15:00'],
‘temp': [18, 22, 19], df = pd.DataFrame(weather_dict)
"humidity': [65, 58, 721 prlnt(df)

I3

Access a “column”: Access a column:

temperatures = weather_dict['temp'] temperatures = df['temp']

Result: [18, 22, 19] # Result: pandas Series with [18, 22, 19]

ahdr
LSE DS105A (2025/26) g

32 /34

JSON Preview: Whats Coming in Week 03

JSON objects are a mixture of dictionaries and lists, nested inside each other. Your goal will be to
transform them into nice tables!

This 1is what Open-Meteo actually returns:
api_response = {
"hourly": {
"time": ["2025-10-16T00:00", "2025-10-16T01:00", '"2025-10-16T02:00"],
"temperature_2m": [15.2, 14.8, 14.5]

}
"hourly_units": {
"temperature_2m": "°C"

}

Practice your lists and dictionaries skills! You
need to be able to understand if a structure is a
list or a dictionary, and how to manipulate them.

You practice some of it in the B W02 Lab
tomorrow but keep practicing further!

ahdr
LSE DS105A (2025/26) @

http://localhost:8888/2025-2026/autumn-term/weeks/week02/lab.html

What s Next?

WO02 Lab (Friday)

e Practice extracting nested data structures

WO03 Formative (next week)

Lots of new cool stuff awaits youl!

e Terminal basics: file systems, paths, and directories

More DataQuest: for loops and 1f—else conditionals

Git basics: version control for your data projects

The Big Picture

Week 01: Explored data that was already clean and structured

Week 02: Learned how computers work and how to get live data

Week 03: Bridge the gap by transforming messy JSON into clean tables

LSE DS105A (2025/26)

33 /34

34 /34

If you want to go deeper

Key Questions to Reflect On:

e How do the Python fundamentals from DataQuest connect to the data analysis you did in
the (-2 W02 Practice)?

e What's the relationship between memory and DataFrame operations?

e How might APIs change the way you think about data collection?

Next week: We'll transform complex JSON data into the clean DataFrames you'’re already
comfortable working with.

v~ Remember: Use the #he lp channel on Slack for any questions that come up as you
work through the lab tomorrow!

ahdr
LSE DS105A (2025/26) g

http://localhost:8888/2025-2026/autumn-term/practice/week02.html

