
Week 02
Python Fundamentals,
Collections and First Steps
with APIs

DS105A –

Data for

Data

Science

Dr

🗓️ 09 Oct 2025

Jon Cardoso-Silva

LSE Data Science Institute

LSE DS105A (2025/26)

1 / 34

https://jonjoncardoso.github.io/
https://lse.ac.uk/dsi

1️⃣ DataQuest Debrief &
Markdown
Let’s start by seeing where you are with the DataQuest lessons

and then connect them to what you experienced in Week 01.

16:00 – 16:20

LSE DS105A (2025/26)

2 / 34

🔄 Quick Completion Poll
Through Mentimeter we’ll see how far you got with the 📝 W02 Formative

DataQuest lessons:

Programming in Python ✅ / ⏳ / ❌

Programming Python Variables ✅ / ⏳ / ❌

Python Data Types: Integers, Floats, Strings ✅ / ⏳ / ❌

Python Lists ✅ / ⏳ / ❌

💡 You feel behind tomorrow in the lab if you haven’t done all

of these!.

LSE DS105A (2025/26)

3 / 34

Markdown Concepts
We use Markdown to format Slack messages, in our 📚 Jupyter Notebooks, these slides, and all the course

webpages you see on Moodle.

If you type this: You get this:
This is a bold text.

This is an italic text.

This is a

print("Hello, World!")

This is a **bold** text.

This is an _italic_ text.

[This is a link](https://lse.ac.uk/dsi)

`print("Hello, World!")`

```python
# This is a code block
print("Hello, World!")
```

link

This is a code block
print("Hello, World!")

The code blocks are just to represent code, not to execute it.

4 / 34

https://lse.ac.uk/dsi

Markdown Concepts (Headings)
There are also headings in Markdown. They help structure content—not just make text big!

(Those won’t work in Slack, by the way.)

If you type this: You get this:

⚠️ Do not use # just to make text bigger! It’s not what it represents.

Use it to create hierarchical demarcations of sections instead.

Title (H1)

Section (H2)

Sub-section (H3)

Sub-sub-section (H4)

Title (H1)
Section (H2)

Sub-section (H3)

Sub-sub-section (H4)

LSE DS105A (2025/26)

5 / 34

💭 Group Discussion: DataQuest Concepts
Let’s connect what you learned in DataQuest to the data work you’ve done. Form groups of 3-4 people

around you.

Your task (5 minutes total):

1. Share your “aha moment” (2 minutes): Each person briefly shares one concept from

DataQuest that clicked for them this week. Could be variables, data types, lists, or anything

else.

2. Connect to Week 01 (2 minutes): Discuss together: How might these Python concepts relate

to the DataFrame work you did last week?

3. Pick one insight (1 minute): Choose one connection your group found interesting to share in

Slack.

💡 Post in Slack: Drop your group’s key insight in the thread on the #social channel. I’ll

synthesise common patterns in a moment.

LSE DS105A (2025/26)

6 / 34

2️⃣ Binary & Memory
Foundations
To understand why my_list[0] works, we need to understand

how computers actually think.

16:20 – 16:40

LSE DS105A (2025/26)

7 / 34

Computers Only Understand 0s and 1s
Numbers, text, images, and sounds are all stored as sequences of 0s and 1s in

your computer’s memory. Each 0 or 1 is called a bit.

Think of a bit as a tiny box:

LSE DS105A (2025/26)

8 / 34

Computers Only Understand 0s and 1s
Numbers, text, images, and sounds are all stored as sequences of 0s and 1s in

your computer’s memory. Each 0 or 1 is called a bit.

Think of a bit as a tiny box:

0 ← a bit can have a value of 0

LSE DS105A (2025/26)

9 / 34

Computers Only Understand 0s and 1s
Numbers, text, images, and sounds are all stored as sequences of 0s and 1s in

your computer’s memory. Each 0 or 1 is called a bit.

Think of a bit as a tiny box:

but nothing else!

1 ← OR it can have a value of 1

LSE DS105A (2025/26)

10 / 34

How Numbers are Stored
With more bits, we can represent more numbers. Here’s how 4 bits can represent 16 different numbers:

Connection to the DataQuest lessons (📝): when you create an integer in Python, you

are telling your computer to reserve a fixed-size space in memory for a series of 0s and 1s.

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

→ 0

→ 1

→ 2

→ 3

→ 4

→ 5

→ 6

→ 7

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

→ 8

→ 9

→ 10

→ 11

→ 12

→ 13

→ 14

→ 15

W02 Practice

LSE DS105A (2025/26)

11 / 34

http://localhost:8888/2025-2026/autumn-term/practice/week02.html

The ASCII Table: How Text Becomes Binary
In the early days of computing, text was represented using the ASCII table.

ASCII uses 7-8 bits to represent each individual character. Here are some

examples:

The letter ‘A’ is represented

by the number 65 encoded

in binary as:

The letter ‘a’ (lowercase) is

represented by the number

97 encoded in binary as:

The linebreak character ‘\n’

is represented by the

number 10 encoded in binary

as:
0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1

0 0 0 1 0 1 0 0

Click to see the full table. Modern Python uses UTF-8, which includes emojis! 🤗here
LSE DS105A (2025/26)

12 / 34

https://www.ascii-code.com/

🗂️ Variables as Memory Addresses
When you create a variable in Python, you’re not creating a container for data. You’re creating a reference (a

pointer) to a location in memory where the data lives.

What actually happens:

1. Python converts 25.3 to binary

2. Finds available space in memory

3. Stores the binary representation there

4. Creates label temperature pointing to

that location

When you reassign:

Python doesn’t change the old value. It

stores 28.7 in a new location and updates

the reference.

Memory Addresses (simplified):

Address Variable Value

0x1000 temperature → 25.3

… … …

0x1048 temperature → 28.7

🔍 You can try it yourself:

temperature = 25.3

temperature = 28.7

temperature = 25.3
print(id(temperature)) # Memory address

temperature = 28.7
print(id(temperature)) # Different addres

LSE DS105A (2025/26)

13 / 34

📊 Data Types and Memory Storage
💡 Although you can’t change the size of the data types in ‘pure Python’, we will enforce this when we start working

with numpy and pandas in the next few weeks.

Integer Storage:

int32: Uses 32 bits (4 bytes)

Can store: -2,147,483,648 to 2,147,483,647

int64: Uses 64 bits (8 bytes)

Can store: much larger numbers!

Why this matters:

A DataFrame with 1 million integers:

int32: ~4 MB of memory

int64: ~8 MB of memory

Choosing the right type saves memory!

Float Precision:

Python floats use 64 bits by default.

This is why sometimes:

Odly, the binary representation of numbers in

programming isn’t always exact.

🤯 Click to read more about this.

0.1 + 0.2 == 0.3 # False!
Actually gives: 0.30000000000000004

here

LSE DS105A (2025/26)

14 / 34

https://0.30000000000000004.com/

📦 Collections Store References Too
Lists and dictionaries don’t store the actual data. They, too, store references to where the data lives in memory.

Memory layout:

temps → [0x2000, 0x2004, 0x2008]

0x2000 18

0x2004 22

0x2008 19

Why this matters:

1. Lists can resize because they just add more

references

2. When you pass a list to a function, you’re

passing the reference, not copying all the

data

3. This is why operations on large datasets can

be fast

Collections are containers of references, not

containers of actual values.

Why bother? Understanding this memory model helps you understand why some operations are fast (just changing a

reference) and others are slow (copying actual data), and why some data structures work better for certain tasks.

temps = [18, 22, 19]

LSE DS105A (2025/26)

15 / 34

3️⃣ Collections In Practice
Most of the time in data science, we work with collections of

values.

In ‘pure Python’, the two most important collections are lists and

dictionaries and they are the foundation for the more complex

data structures we will learn about later in Weeks 03 and 04.

16:40 – 17:05

LSE DS105A (2025/26)

16 / 34

⚠️ The Problem with Separate Lists
Think about the data you worked with in the (📝) at the end. You saw DataFrames (tables) with multiple

columns. What if we tried to store that data using separate lists?

Three critical problems:

1. Coordination nightmare: If you sort temps,

the other lists don’t follow. Your data is now

corrupted.

2. Fragile connections: The relationship

between dates[0], temps[0], and

conditions[0] exists only in your mind,

not in the code.

3. Error-prone: Add a temperature but forget

to add a date? Your lists are now different

lengths.

W01 Practice

Weather data as separate lists
dates = ['2025-10-13', '2025-10-14', '2025-10-15']
temps = [18, 22, 19]
conditions = ['cloudy', 'sunny', 'rainy']

To get info about the first day:
print(f"Date: {dates[0]}")
print(f"Temp: {temps[0]}°C")
print(f"Condition: {conditions[0]}")

This is why we need better data

structures. More complex

structures will let us connect

related data with meaningful

names instead of fragile positions.

LSE DS105A (2025/26)

17 / 34

http://localhost:8888/2025-2026/autumn-term/practice/week01.html

🧠 Memory: Lists vs Dictionaries
Still, it’s important to understand how lists and dictionaries organise those references

differently as these are the foundations for everything that is to come.

Lists: Sequential Memory

Lists store references in order. Python can

quickly access any position because it knows

exactly where each item lives in memory.

Fast: Access by position (temps[0])

Limitation: No meaningful names

Dictionaries: Named Memory

Dictionaries use a hash table to map keys to

memory locations. The key becomes a

meaningful label for the data.

Fast: Access by name (weather['temp'])

Advantage: Self-documenting code

🤓 If you want to know more:

temps = [18, 22, 19]
Memory: [ref→18, ref→22, ref→19]

weather = {'temp': 18, 'city': 'London'}
Memory: 'temp' → ref→18, 'city' → ref→'London'

Python dicts and memory usage

LSE DS105A (2025/26)

18 / 34

https://lerner.co.il/2019/05/12/python-dicts-and-memory-usage/

📋 Lists vs Dictionaries: Concept and Syntax
Most of the data you will work with will already come in a collection, but if you need to create

one, here’s how you do it.

List Dictionary

List of temperatures in Celsius
temperatures = [22, 21, 19, 23, 20]

Or

temperatures = [
 22,
 21,
 19,
 23,
 20
]

Dictionary of temperatures
weather_data = {'09:00': 22, '12:00': 21, '15:00'

Or

weather_data = {
 '09:00': 22,
 '12:00': 21,
 '15:00': 19,
 '18:00': 23,
 '21:00': 20
}

💡 You can use multiple lines for readability.

LSE DS105A (2025/26)

19 / 34

🔍 Accessing Elements
Accessing data differs between lists and dictionaries.

List Dictionaries

Accessing the first temperature
first_temp = temperatures[0]

Accessing the last temperature
last_temp = temperatures[-1]

Lists are indexed by integers,

starting at 0.

To get an element, you need to

know its position in the list.

Accessing temperature at 12:00
temp_at_noon = weather_data['12:00']

Accessing temperature at 18:00
temp_at_evening = weather_data['18:00']

Dictionaries are accessed by keys,

not by position.

You need to know the key to

retrieve the value.

LSE DS105A (2025/26)

20 / 34

🌤️ Dictionary of Lists: The DataFrame Pattern
Let’s see how real weather data might look using a dictionary of lists:

A dictionary of lists (like a DataFrame!)
weekly_weather = {
 'date': ['2025-10-13', '2025-10-14', '2025-10-15'],
 'temp': [18, 22, 19],
 'humidity': [65, 58, 72],
 'conditions': ['cloudy', 'sunny', 'rainy']
}

Accessing data - column first, then row
all_temps = weekly_weather['temp'] # Gets [18, 22, 19]
monday_temp = weekly_weather['temp'][0] # Gets 18
tuesday_conditions = weekly_weather['conditions'][1] # Gets 'sunny'

This is very similar to how pandas DataFrames work! Each key is a column

name, and each value is a list of data for that column. Notice the access

pattern: dict['column'][row] - same as df['column'][0] from Week

01.

LSE DS105A (2025/26)

21 / 34

📊 Quick Poll: When to Use Each Structure?
Let’s check your understanding. Go to the #social channel on Slack and vote:

Scenario: You’re storing hourly temperature readings for London, and you want to look up the

temperature at a specific time (like “14:00”).

Which structure would you use?

A. A simple list: [18, 22, 19, 23, 20]
B. A dictionary: {'09:00': 18, '12:00': 22, '15:00': 19, ...}
C. Separate lists for times and temperatures

D. A list of dictionaries

LSE DS105A (2025/26)

22 / 34

☕ Break
After the break:

Live data collection from APIs

Converting JSON to Python

dictionaries

Connecting API data to the

pandas DataFrames you used in

Week 01

17:05 – 17:15

LSE DS105A (2025/26)

23 / 34

4️⃣ APIs & Live Data Collection
17:15 – 17:50

LSE DS105A (2025/26)

24 / 34

The Problem with Manual Data Entry
So far, we’ve created our own lists and dictionaries manually,

mostly to demonstrate the concepts. But in practice, we will

collect it from data sources.

❌ Problem:

Typing weather data manually is tedious and error-prone.

✅ Solution:

In this course, we will use APIs (Application Programming

Interfaces) to fetch live real data dynamically.

LSE DS105A (2025/26)

25 / 34

What is an API?
An API is like a vending machine:

1. You make a request (insert a coin & press a button).

2. The API processes it (retrieves your snack).

3. You get a response (your snack comes out).

In Python, we use a package called requests to “talk” to APIs.

The requests package does not come pre-installed with Python. You need to install it using pip.

On VS Code, click on the Menu icon then navigate to Terminal > New Terminal.

A window will pop up at the bottom of the screen.

In the terminal window, type pip install requests and press Enter.

Wait for the installation to complete.

The requests package is now installed and ready to use on Jupyter Notebooks.

LSE DS105A (2025/26)

26 / 34

The Open-Meteo API for Weather Data
Visit Open-Meteo
🔗

Explore their API

documentation.

🚀 We will:

Request hourly temperature

for London

Receive structured weather

data (it comes back in a

format called JSON).

Constructing the Request

✅ We now have real-time weather data!

⏭️ Let’s inspect the response (live demo).

https://open-meteo.com/ import requests

url = "https://api.open-meteo.com/v1/forecast"
params = {
 "latitude": 51.5085,
 "longitude": -0.1257,
 "hourly": "temperature_2m",
 "timezone": "Europe/London"
}

response = requests.get(url, params=params)

LSE DS105A (2025/26)

27 / 34

https://open-meteo.com/

📦 Converting API Data to a Python Dictionary
The response you get from the API

is just pure text, just a string that

looks like a Python dictionary.

💡 TIP: Just because something looks

like a dictionary or a list, it doesn’t mean

it is.

To convert it into a Python

dictionary, we use the json()
method:

Now weather_data is a Python dictionary!

We can then access its values just like any other

dictionary:

print(response)

weather_data = response.json()
type(weather_data)

weather_data["hourly"]["temperature_2m"]

LSE DS105A (2025/26)

28 / 34

🎯 Live Demo: Open-Meteo API
Let me show you this API in action. We’ll:

1. Make the request and examine the response structure

2. Extract temperature data into a Python list

3. See how this data could become a pandas DataFrame column

During this demo, think about: How is this different from the clean CSV files you worked with in Week

01? What are the advantages and challenges of live data?

LSE DS105A (2025/26)

29 / 34

5️⃣ Synthesis & W03 Preview
17:50 – 18:00

LSE DS105A (2025/26)

30 / 34

🔗 Connecting Dictionaries to DataFrames
Here’s what is coming next. Next week, code-wise, we will be focused on transforming JSON

data into clean and nicely tabular DataFrames.

Your knowledge of dictionaries and lists will be put to the test!

Dictionary structure:

Access a “column”:

DataFrame equivalent:

Access a column:

weather_dict = {
 'time': ['09:00', '12:00', '15:00'],
 'temp': [18, 22, 19],
 'humidity': [65, 58, 72]
}

temperatures = weather_dict['temp']
Result: [18, 22, 19]

import pandas as pd

df = pd.DataFrame(weather_dict)
print(df)

temperatures = df['temp']
Result: pandas Series with [18, 22, 19]

LSE DS105A (2025/26)

31 / 34

🔮 JSON Preview: What’s Coming in Week 03
JSON objects are a mixture of dictionaries and lists, nested inside each other. Your goal will be to

transform them into nice tables!

Practice your lists and dictionaries skills! You

need to be able to understand if a structure is a

list or a dictionary, and how to manipulate them.

You practice some of it in the 💻

tomorrow but keep practicing further!

This is what Open-Meteo actually returns:
api_response = {
 "hourly": {
 "time": ["2025-10-16T00:00", "2025-10-16T01:00", "2025-10-16T02:00"],
 "temperature_2m": [15.2, 14.8, 14.5]
 },
 "hourly_units": {
 "temperature_2m": "°C"
 }
}

W02 Lab

LSE DS105A (2025/26)

32 / 34

http://localhost:8888/2025-2026/autumn-term/weeks/week02/lab.html

🔜 What’s Next?
💻 W02 Lab (Friday)

Practice extracting nested data structures

📝 W03 Formative (next week)

Lots of new cool stuff awaits you!

Terminal basics: file systems, paths, and directories

More DataQuest: for loops and if-else conditionals

Git basics: version control for your data projects

🎯 The Big Picture

Week 01: Explored data that was already clean and structured

Week 02: Learned how computers work and how to get live data

Week 03: Bridge the gap by transforming messy JSON into clean tables

LSE DS105A (2025/26)

33 / 34

🤔 If you want to go deeper
Key Questions to Reflect On:

How do the Python fundamentals from DataQuest connect to the data analysis you did in

the (📝)?

What’s the relationship between memory and DataFrame operations?

How might APIs change the way you think about data collection?

Next week: We’ll transform complex JSON data into the clean DataFrames you’re already

comfortable working with.

💬 Remember: Use the #help channel on Slack for any questions that come up as you

work through the lab tomorrow!

W02 Practice

LSE DS105A (2025/26)

34 / 34

http://localhost:8888/2025-2026/autumn-term/practice/week02.html

