
Week 07
JSON Normalisation and Data
Reshaping

DS105A –

Data for

Data

Science

Dr

🗓️ 13 Nov 2025

Jon Cardoso-Silva

LSE Data Science Institute

LSE DS105A (2025/26)

1 / 45

https://jonjoncardoso.github.io/
https://lse.ac.uk/dsi

Today’s Goals
Learn: pd.json_normalize() to flatten nested JSON structures

See: Other reshaping tools (concat(), explode(), melt()) that

you’ll use again in W08 and W09

Why this matters: These skills directly support your ✍️

 work and make your MP1 code simpler.

Mini-

Project 2

LSE DS105A (2025/26)

2 / 45

http://localhost:8888/2025-2026/autumn-term/summative/mini-project-2.html
http://localhost:8888/2025-2026/autumn-term/summative/mini-project-2.html

1️⃣ Mentimeter: MP1
Experience
I will share a link to a Mentimeter poll to gather your experience with the ✍️ Mini-Project 1.

LSE DS105A (2025/26)

3 / 45

2️⃣ Lessons from ✍️ MP1
Let’s look at excellent work from one of your classmates who compared two London boroughs

affected by ULEZ expansion.

👉 I will share the model solution on Nuvolos after the lecture.

LSE DS105A (2025/26)

4 / 45

Focus on ULEZ
London had this policy to reduce air

pollution associated with road traffic called

ULEZ. It’s been here for some time but in

2021 and 2023 it was expanded to outer

London boroughs.

Aden Grandcourt, one of your classmates,

framed his project as a comparison of the

impact of ULEZ on air quality (

concentration) in two neighbouring

boroughs:

Haringey

Enfield

This solution addresses the main question

we posed: “Is London’s air getting better or

worse?” in a creative and interesting way.

NO2

LSE DS105A (2025/26)

5 / 45

Insight 1

Credit: Aden Grandcourt (✍️ Mini-Project 1 submission) - with permission.

Photo source: .National Park City

6 / 45

https://nationalparkcity.london/haringey/

Insight 2

In both boroughs across all 3 periods, median NO2

concentration decreased

Location Pre to 1st Expansion % 1st to 2nd Expansion % Overall % Change

Haringey -13.10% -7.08% -19.26%

Enfield -7.56% -6.41% -13.48%

styled_table

Credit: Aden Grandcourt (✍️ Mini-Project 1 submission) - with permission.

7 / 45

The For Loop Approach (Perfectly Acceptable!)
Here’s how many of you solved the JSON parsing problem in MP1:

✅ This approach is fully aligned with how we taught in this course so far!

The student understood the data structure, navigated nested dictionaries correctly,

and successfully extracted the needed values.

haringey_timestamp = []1
haringey_no2 = []2

3
for reading in haringey_data["list"]:4
 timestamp = reading["dt"]5
 no2 = reading["components"]["no2"]6
 haringey_timestamp.append(timestamp)7
 haringey_no2.append(no2)8

Code adapted from Aden Grandcourt (✍️ Mini-Project 1 submission) - with permission.

8 / 45

Here’s a more direct approach…
I did a Ctrl + F search for json_normalize in your submission

notebooks and found that 44/81 of you discovered this simpler

approach

Before (for loop):

6 lines of code

Manual navigation

Easy to make human mistakes

After (json_normalize()):

1 line of code

Automatic flattening

Less error-prone

df = pd.json_normalize(json_data["list"])

LSE DS105A (2025/26)

9 / 45

What json_normalize() Does
Input: Nested JSON structure

Output: Clean DataFrame

dt components.no2 components.pm2_5

1606435200 15.2 8.5

📋 Note: Nested dictionaries become columns with dot notation (components.no2). Lists of dictionaries

become rows.

{
 "list": [
 {
 "dt": 1606435200,
 "components": {
 "no2": 15.2,
 "pm2_5": 8.5
 }
 }
]
}

LSE DS105A (2025/26)

10 / 45

Here’s another way
You could also get rid of that import json and use pandas straightaway to parse the JSON data

into a DataFrame:

If that was the same JSON we saw in the previous slide, the output would look like this:

This produces a DataFrame with a single row (index: 0) and a single column called list - not

the best name for a column.

📋 Note: Note, though, that this is not a very useful DataFrame. The data is nested in the list column.

We will need to normalise it - also using json_normalize() - to get a useful DataFrame.

df = pd.read_json('data/air_quality_data.json')

 list
0 {'dt': 1606435200, 'components': {'no2': 15.2,...

LSE DS105A (2025/26)

11 / 45

Here’s another way (Series)
You could also have chosen the typ to be series to get a Series object instead of a DataFrame.

The output would look like this:

📋 Remember: pandas Series are like one-dimensional numpy arrays with labelled indices.

That is, kind of like a dictionary but with more functionality. You can do things like

series.apply(), series.value_counts(), series.sort_values(), etc.

📋 Also remember: Each column in a pandas DataFrame is a Series.

series = pd.read_json('data/air_quality_data.json', typ='series')

list [{'dt': 1606435200, 'components': {'no2': 15.2...
dtype: object

LSE DS105A (2025/26)

12 / 45

3️⃣ json_normalize() Deep
Dive
Let’s explore the powerful parameters that make json_normalize() handle complex structures.

LSE DS105A (2025/26)

13 / 45

Basic Flattening (What We Just Saw)

What it does:

Flattens nested dictionaries into columns

Uses dot notation for nested keys (components.no2)

Creates one row per item in the list

df = pd.json_normalize(data["list"])

LSE DS105A (2025/26)

14 / 45

Flattening the Air Quality Data - Slide 01
Full example

Here is code you could have

used in your ✍️ Mini

Project 1 if you knew about

json_normalize():
Producing this pandas Series

borough_data = pd.read_json(filename, typ='series')

coord {'lon': -0.101, 'lat': 51.588}
list [{'main': {'aqi': 2}, 'components': {'co': 347...
dtype: object

LSE DS105A (2025/26)

15 / 45

Flattening the Air Quality Data - Slide 02
Full example

Here is code you could have

used in your ✍️ Mini

Project 1 if you knew about

json_normalize():

I will completely ignore the coord key and focus just on list:

Which looks like this:

borough_data['list']

[{'main': {'aqi': 2},
 'components': {'co': 347.14,
 'no': 33.53,
 'no2': 41.13,
 ...},
 'dt': 1606435200},
 {'main': {'aqi': 2},
 'components': {'co': 293.73,
 'no': 11.18,
 'no2': 42.16,
 ...},
 'dt': 1606438800},
 ...
]

LSE DS105A (2025/26)

16 / 45

Flattening the Air Quality Data - Slide 03
Full example

Here is code you could have

used in your ✍️ Mini

Project 1 if you knew about

json_normalize():

I can convert this list of dictionaries into a (nested) DataFrame

using pd.DataFrame():

Which looks like this:

main components dt

0 {‘aqi’: 2} {‘co’: 347.14, ‘no’: 33.53, ‘no2’: 41.13, ‘o3’: 0.01,

‘so2’: 7.51, ‘pm2_5’: 18.81, ‘pm10’: 21.35, ‘nh3’:

0.25}

1606435200

1 {‘aqi’: 2} {‘co’: 293.73, ‘no’: 11.18, ‘no2’: 42.16, ‘o3’: 0.21, ‘so2’:

7.27, ‘pm2_5’: 15.68, ‘pm10’: 18.17, ‘nh3’: 0.01}

1606438800

2 {‘aqi’: 2} {‘co’: 277.04, ‘no’: 5.64, ‘no2’: 41.81, ‘o3’: 0.32, ‘so2’:

7.33, ‘pm2_5’: 15.31, ‘pm10’: 17.65, ‘nh3’: 0.01}

1606442400

pd.DataFrame(borough_data['list'])

LSE DS105A (2025/26)

17 / 45

Flattening the Air Quality Data - Slide 04
Full example

Here is code you could

have used in your ✍️

Mini Project 1 if you

knew about

json_normalize():

I can clean it up with the knowledge we have gained so far:

Producing this DataFrame:

components dt Borough aqi

0 {‘co’: 347.14, ‘no’: 33.53, ‘no2’: 41.13, ‘o3’: 0.01, ‘so2’:

7.51, ‘pm2_5’: 18.81, ‘pm10’: 21.35, ‘nh3’: 0.25}

2020-11-27

00:00:00

Haringey 2

1 {‘co’: 293.73, ‘no’: 11.18, ‘no2’: 42.16, ‘o3’: 0.21, ‘so2’:

7.27, ‘pm2_5’: 15.68, ‘pm10’: 18.17, ‘nh3’: 0.01}

2020-11-27

01:00:00

Haringey 2

2 {‘co’: 277.04, ‘no’: 5.64, ‘no2’: 41.81, ‘o3’: 0.32, ‘so2’:

7.33, ‘pm2_5’: 15.31, ‘pm10’: 17.65, ‘nh3’: 0.01}

2020-11-27

02:00:00

Haringey 2

borough_data = (
 pd.DataFrame(borough_data['list'])
 .assign(Borough="Haringey") # or better, from a variable
 .assign(dt=lambda d: pd.to_datetime(d['dt'], unit='s'))
 .assign(aqi=lambda d: d['main'].iloc[0]['aqi'])
 .drop(columns=['main'])
)

18 / 45

Flattening the Air Quality Data - Slide 05
Full example

Here is code you could

have used in your ✍️

Mini Project 1 if you

knew about

json_normalize():

Now I need to flatten the components dictionary into columns:

which looks like this:

co no no2 o3 so2 pm2_5 pm10 nh3

0 347.14 33.53 41.13 0.01 7.51 18.81 21.35 0.25

1 293.73 11.18 42.16 0.21 7.27 15.68 18.17 0.01

2 277.04 5.64 41.81 0.32 7.33 15.31 17.65 0.01

It’s starting to look nice! 😀

components = pd.json_normalize(borough_data['components'])

LSE DS105A (2025/26)

19 / 45

Flattening the Air Quality Data - Slide 06
To ‘connect’ both DataFrames, we can use a 🆕 new function: pd.concat() to combine them:

which would look like this:

dt Borough aqi co no no2 o3 so2 pm2_5 pm10 nh3

0 2020-11-27 00:00:00 Haringey 2 347.14 33.53 41.13 0.01 7.51 18.81 21.35 0.25

1 2020-11-27 01:00:00 Haringey 2 293.73 11.18 42.16 0.21 7.27 15.68 18.17 0.01

2 2020-11-27 02:00:00 Haringey 2 277.04 5.64 41.81 0.32 7.33 15.31 17.65 0.01

I MUST specify the axis=1 to combine the DataFrames horizontally
otherwise it will combine them vertically
df_haringey = pd.concat([borough_data.drop(columns=['components']), components], axis=1)

LSE DS105A (2025/26)

20 / 45

Flattening the Air Quality Data - Slide 07
If you had multiple boroughs, you could create a custom function to do that whole procedure

for you:

And then you could call it like this:

def get_air_quality_data(borough_name):
 borough_data = pd.read_json(filename, typ='series')
 ... # same as before
 components = pd.json_normalize(borough_data['components'])
 output = pd.concat([borough_data.drop(columns=['components']), components], axis=1)
 output.assign(Borough=borough_name)
 return output

Assuming you have a list of your borough names
df = [get_air_quality_data(borough) for borough in boroughs]

To concatenate them all together vertically
df = pd.concat(df)

LSE DS105A (2025/26)

21 / 45

Using record_path to Expand Nested Lists
Sometimes you want to keep the parent information when expanding a nested list.

Input: Output:

name role album_name album_year

Lana Del Rey featured Midnights 2022

Jack Antonoff producer Midnights 2022

df = pd.json_normalize(
 data=json_data['albums'], # Where the top data is
 record_path='collaborators', # Expand this list (what to expand into rows)
 meta=['name', 'year'], # Keep from parent (what to keep)
 meta_prefix='album_' # Avoid name conflicts (what to prefix)
)

{
 "albums": [
 {
 "name": "Midnights",
 "year": 2022,
 "collaborators": [
 {"name": "Lana Del Rey", "role": "featured"},
 {"name": "Jack Antonoff", "role": "producer"}
]
 }
]
}

LSE DS105A (2025/26)

22 / 45

Understanding the Parameters
data: The nested list to expand/normalize.

record_path: Path to a key whose value is a list. Each item in that

list becomes one row.

meta: Which fields from the parent object to keep (added to

each row)

meta_prefix: Prefix to add to meta columns (prevents conflicts)

Critical point: record_path must point to a key whose value is a list. The list is what creates multiple

rows. If the value isn’t a list, you’ll get an error.

Think of it this way: record_path says “make one row per item in this list”, and meta says “but also

include this information from the parent”.

LSE DS105A (2025/26)

23 / 45

Controlling Depth with max_level
Just so you know: You can limit how many levels of nesting get flattened into columns.

max_level=0: Only flatten the top level (no nested dictionaries expanded)
df = pd.json_normalize(data, max_level=0)

max_level=1: Flatten one level deeper (nested dicts become columns)
df = pd.json_normalize(data, max_level=1)

LSE DS105A (2025/26)

24 / 45

Custom Separators
Change the dot notation separator:

When to use: If your column names already contain dots, or you

prefer underscores.

Default: components.no2
df = pd.json_normalize(data["list"])

Custom: components_no2
df = pd.json_normalize(data["list"], sep='_')

LSE DS105A (2025/26)

25 / 45

What Can json_normalize() Accept?
Works with:

✅ Dictionaries (nested structures)

✅ Lists of dictionaries

✅ pd.Series containing dictionaries or lists

Key point: If you have a DataFrame column containing nested

JSON, pass that Series to json_normalize().

Normalize a Series of dictionaries
df = pd.json_normalize(data_series)

LSE DS105A (2025/26)

26 / 45

When to Use json_normalize()
Use it when:

✅ You have nested JSON from APIs

✅ You need to flatten dictionaries into columns

✅ You have lists of dictionaries

Don’t use it when:

❌ Your data is already flat (just use pd.DataFrame())

❌ You need very custom transformations (loops might be

clearer)

❌ The structure is too complex (consider preprocessing first)
LSE DS105A (2025/26)

27 / 45

Mini-Project 2 Preview: TfL API Structure
Here’s what the JSON from TfL Journey Planner API looks like (you’ll see this in your MP2

NB01):

Challenge: The transport mode is buried inside legs, which is a list inside each journey. You’ll

need to normalize journeys first, then handle the legs list.

{
 "journeys": [
 {
 "duration": 1200,
 "legs": [
 {
 "mode": "bus",
 "duration": 600,
 "instruction": {...}
 },
 {
 "mode": "tube",
 "duration": 600,
 "instruction": {...}
 }
]
 }
]
}

LSE DS105A (2025/26)

28 / 45

4️⃣ Nested JSON Challenge
Time to put your skills to the test!

LSE DS105A (2025/26)

29 / 45

Speed Challenge 🏆
Task: Normalize the JSON structure I’m giving you right now into

an informative, analysis-ready DataFrame. Share your solution on

Slack with a screenshot of your DataFrame.

Time: 15 minutes

Prize: Most elegant solution wins a tote bag! 🎁

Criteria for “elegant”:

Code is clean and readable

DataFrame structure is useful for analysis

Solution demonstrates understanding of json_normalize() parameters

LSE DS105A (2025/26)

30 / 45

☕ Coffee Break

After the break:

OpenSanctions challenge

showcase

Combining DataFrames with

pd.concat()

Handling list columns with

.explode()

Reshaping data with .melt()

LSE DS105A (2025/26)

31 / 45

5️⃣ Other Essential Functions
Beyond json_normalize(), here are other reshaping tools. We’re showing you these now so you

can recognise them. You’ll see more examples in W08 (databases) and W09 (visualisations).

🫨 DON’T PANIC! We’re showing you these now so you can recognise them. You’ll see more examples

in 🖥️ W08 Lecture and 🖥️ W09 Lecture.

LSE DS105A (2025/26)

32 / 45

Combining DataFrames with pd.concat()
When you have multiple DataFrames (e.g., from different locations or time periods):

Before:

df_location1:

location NO2

Haringey 20.5

df_location2:

location NO2

Enfield 15.3

After:

df_all:

location NO2

Haringey 20.5

Enfield 15.3

Key parameter: ignore_index=True resets the index (0, 1, 2… instead of keeping original

indices)

Combine vertically (stack rows)
df_all = pd.concat([df_location1, df_location2], ignore_index=True)

LSE DS105A (2025/26)

33 / 45

When You Need concat()
Use it when:

✅ You normalized multiple JSON files

✅ You have data from different sources

✅ You need to combine results from different time periods

Example from MP1: Combining Haringey and Enfield data into

one DataFrame

LSE DS105A (2025/26)

34 / 45

Handling List Columns with .explode()
Sometimes after normalization, columns contain lists. .explode() creates one row per list

element.

Before:

name emails

Alice [‘a@example.com’,

‘b@example.com’]

Bob [‘c@example.com’]

After:

name emails

Alice a@example.com

Alice b@example.com

Bob c@example.com

Create DataFrame with list column
df = pd.DataFrame({
 'name': ['Alice', 'Bob'],
 'emails': [['a@example.com', 'b@example.com'], ['c@example.com']]
})

After explode: one row per email
df_exploded = df.explode('emails')

LSE DS105A (2025/26)

35 / 45

Combining json_normalize() and .explode()
Real-world scenario: normalize first, then explode list columns.

Step 1: Normalize
df = pd.json_normalize(data)

Step 2: Explode list columns
df = df.explode('properties.sanctions')

LSE DS105A (2025/26)

36 / 45

Reshaping with .melt(): Wide to Long
Transform from “wide” format (many columns) to “long” format (fewer columns, more rows).

Wide format:

date NO2 PM2.5

2020-01-01 20.5 8.5

Long format:

date pollutant concentration

2020-01-01 NO2 20.5

2020-01-01 PM2.5 8.5

The long format is useful for plotting with seaborn.

df_long = df_wide.melt(
 id_vars='date', # Keep as identifier
 value_vars=['NO2', 'PM2.5'], # These become 'variable' column
 var_name='pollutant', # Name for variable column
 value_name='concentration' # Name for value column
)

LSE DS105A (2025/26)

37 / 45

Why Use .melt()?
Useful for seaborn plots (we’ll see more in W09):

Use it when:

✅ You need to plot multiple variables together

✅ You want to facet by a variable

✅ You want to compare values across categories

After melting, you can easily plot multiple pollutants
sns.lineplot(data=df_long, x='date', y='concentration', hue='pollutant')

LSE DS105A (2025/26)

38 / 45

Quick Reference: When to Use What
Function Use When

json_normalize() Flattening nested JSON from APIs

pd.concat() Combining multiple DataFrames

.explode() Columns contain lists that need separate

rows

.melt() Converting wide format to long for plotting

LSE DS105A (2025/26)

39 / 45

6️⃣ Wrap-up & Next Steps

LSE DS105A (2025/26)

40 / 45

Key Takeaways
Today you learned:

1. ✅ pd.json_normalize() - Automatically flattens nested JSON

2. ✅ record_path and meta - Control how nested lists expand

3. ✅ pd.concat(), .explode(), .melt() - Reshaping tools you’ll see

again in W08 and W09

Remember: Your for loop solutions from MP1 were correct! These

tools make your code simpler, but understanding the data

structure (which you demonstrated) is the most important skill.

LSE DS105A (2025/26)

41 / 45

Tomorrow’s Lab
In tomorrow’s 💻 W07 Lab, you’ll:

Practice with the OpenSanctions dataset (similar to today’s

challenge)

Work through complex normalization scenarios

Combine multiple reshaping techniques

Create visualisations from normalized data

LSE DS105A (2025/26)

42 / 45

Mini-Project 2 Preview
Released Week 07, due Week 10 (30% of final grade)

You’ll need these skills to:

Collect data from TfL Journey Planner API (nested JSON)

Normalize journey data using json_normalize()

Combine data from multiple sources

Create insights about transport connectivity

LSE DS105A (2025/26)

43 / 45

Model Solution Available
The full model solution from ✍️ Mini-Project 1 (with excellent

reflections) is now available on Nuvolos.

Location: mp1-model-solution/ on Nuvolos

LSE DS105A (2025/26)

44 / 45

Questions?
Resources:

📓 Lecture notebook (downloadable on Nuvolos)

💻 tomorrow

💬 Post questions in #help on Slack

📅 Attend drop-in sessions

Looking ahead: 🖥️ W08 Lecture introduces databases and SQL,

a natural next step after mastering data reshaping!

W07 Lab

LSE DS105A (2025/26)

45 / 45

http://localhost:8888/2025-2026/autumn-term/weeks/week07/lab.html

