1745

DS105A - Week 07
Data for JSON Normalisation and Data

Data _
Science Reshaping

Dr Jon Cardoso-Silva
LSE Data Science Institute

% 13 Nov 2025

https://jonjoncardoso.github.io/
https://lse.ac.uk/dsi

2/45

Today s Goals

e Learn: pd.json normalize() to flatten nested JSON structures

e See: Other reshaping tools (concat(), explode(), melt()) that
you'll use again in W08 and W09

Why this matters: These skills directly support your £, Mini-
Project 2 work and make your MP1 code simpler.

P
LSE DS105A (2025/26) g

http://localhost:8888/2025-2026/autumn-term/summative/mini-project-2.html
http://localhost:8888/2025-2026/autumn-term/summative/mini-project-2.html

Mentimeter: MP1
Experience

| will share a link to a Mentimeter poll to gather your experience with the #. Mini-Project 1.

LSE DS105A (2025/26)

3/45

4 /45

Lessons from P

Let’s look at excellent work from one of your classmates who compared two London boroughs
affected by ULEZ expansion.

= | will share the model solution on Nuvolos after the lecture.

LIS
LSE DS105A (2025/26) @

Focus on ULEZ

London had this policy to reduce air
pollution associated with road traffic called
ULEZ. It’s been here for some time but in
2021 and 2023 it was expanded to outer
London boroughs.

Aden Grandcourt, one of your classmates,
framed his project as a comparison of the
impact of ULEZ on air quality (NO+
concentration) in two neighbouring
boroughs:

e Haringey
e Enfield
This solution addresses the main question

we posed: “Is London’s air getting better or
worse?” in a creative and interesting way.

Hounslow |

Richmond upon Thames

Kingston

upon
Thames

LSE DS105A (2025/26)

Redbridge

Barkin
& g

Dagenham

Newham

> Greenwich

Southwark

Wandsworth
Lambeth Lewisham

5/45

&

Insight 1

The two boroughs apparently saw similar NO2 concentration patterns.
It's hard to conclude the impact of ULEZ from seeing monthly averages alone.

Borough = Harlngey Borough = Enfleld
10. i ULEZ Oct 2021 !ULEZ Aug 2023 i ULEZ Oct 2021 !ULEZ Aug 2023
£ | |
; e e
0 | :
@ 20- : |
o | |
o |
< 10 !
2021 2022 2023 2024 2025 2021 2022 2023 2024 2025

Date Date

Credit: Aden Grandcourt (£, Mini-Project 1 submission) -with permission.
Photo source: National Park City.

https://nationalparkcity.london/haringey/

Insight 2

styled table

In both boroughs across all 3 periods, median NO2
concentration decreased

Location Pre to1st Expansion % 1st to 2nd Expansion % Overall % Change
Haringey -13.10% -7.08% -19.26%

Enfield -1.56% -6.41% -13.48%

Credit: Aden Grandcourt (£, Mini-Project 1 submission) -with permission.

The For Loop Approach (Perfectly Acceptable!)

Here's how many of you solved the JSON parsing problem in MP1:

haringey timestamp = []
haringey no2 = []

for reading in haringey data["list"]:

timestamp = reading["dt"]

no2 = reading["components"]["no2"]
haringey timestamp.append(timestamp)
haringey no2.append(no2)

This approach is fully alighed with how we taught in this course so far!

The student understood the data structure, navigated nested dictionaries correctly,
and successfully extracted the needed values.

Code adapted from Aden Grandcourt (£, Mini-Project 1 submission) -with permission.

Here s a more direct approach...

| did a + F search for In your submission
notebooks and found that 44/81 of you discovered this simpler

approach

df = pd.json normalize(json data["list"])

Before (for loop): After ():
e 6 lines of code e 1line of code
e Manual navigation o Automatic flattening

e Easy to make human mistakes e Less error-prone

LSE DS105A (2025/26)

What Does

Input: Nested JSON structure

. 1606435200,
: A

J

Output: Clean DataFrame

dt components.no2 components.pm2_5
1606435200 15.2 8.5
Note: Nested dictionaries become columns with dot notation (). Lists of dictionaries

become rows.

v
LSE DS105A (2025/26) @

Here s another way

You could also get rid of that and use pandas straightaway to parse the JSON data
Into a DataFrame:

df = pd.read_json('data/air _quality data.json')

If that was the same JSON we saw in the previous slide, the output would look like this:

@ {'dt': 1606435200, 'components': {'no2':

This produces a DataFrame with a single row () and a single column called -not
the best name for a column.

Note: Note, though, that this is not a very useful DataFrame. The data is nested in the column.
We will need to normalise it-also using -to get a useful DataFrame.

LSE DS105A (2025/26)

Here s another way (Series)

You could also have chosen the to be to get a Series object instead of a DataFrame.

series = pd.read _json('data/air_quality data.json', typ='series"')

The output would look like this:

list [{'dt': 1606435200, 'components': {'no2':

dtype: object

Remember: pandas Series are like one-dimensional numpy arrays with labelled indices.

That is, kind of like a dictionary but with more functionality. You can do things like
, etc.

’ ’

Also remember: Each column in a pandas DataFrame is a Series.

LSE DS105A (2025/26)

13 /45

json_normalize() Deep
Dive

Let’s explore the powerful parameters that make json normalize() handle complex structures.

ahdr
LSE DS105A (2025/26) g

Basic Flattening (What We Just Saw)

df = pd.json_normalize(data["list"])

What it does:

. Flattens [Hestedidictionaries into columns

e Uses dot notation for nested keys (components.no2)

e Creates one row per item in the list

LSE DS105A (2025/26)

Flattening the Air Quality Data - Slide Ol

Full example borough data = pd.read _json(filename, typ='series')

Here is code you could have
used in your £, Mini
Project 1if you knew about Producing this pandas Series

coord {'"lon": - , 'lat':

list [{'main’': {'agi': 2}, 'components': {'co':
dtype: object

LSE DS105A (2025/26)

Flattening the Air Quality Data - Slide 02

Full example | will completely ignore the key and focus just on

Here is code you could have
used in your £, Mini borough_data["list']
Project 1if you knew about

Which looks like this:

b]
: 1606435200},
2 : 2},
: A :

J
: 1606438800},

LSE DS105A (2025/26)

Flattening the Air Quality Data - Slide 03

Full example | can convert this list of dictionaries into a (hested) DataFrame

Here is code you could have ~ USINg pd.DataFrame():

used in your £, Mini
Project 1if you knew about pd.DataFrame(borough_data['list'])

json_normalize():

Which looks like this:

17 145

main components dt
0 {aqi:?2} {’c0’: 347.14, ‘no’: 33.53, ‘no2: 41.13, ‘'03’: 0.01, 1606435200
‘so2”: 7.51, ‘pm2_5":18.81, ‘pm10’: 21.35, ‘nh3"
0.25}
1 {*aqi’: 2} {’c0’: 293.73, ‘n0’: 11.18, ‘no2’: 42.16, ‘'03’: 0.21, ‘so2: 1606438800
7.27 ‘pm2_5":15.68, ‘om10:18.17, ‘nh3’: 0.01}
2 {aqgi:?2} {’c0:277.04, ‘no”: 5.64, ‘no2’: 41.81, '03: 0.32, ‘'so2: 1606442400

7.33, ‘'pm2_5":15.31, ‘pm10: 17.65, ‘nh3’: 0.01}

LSE DS105A (2025/26)

Flattening the Air Quality Data - Slide 04

Full example

Here is code you could
have used in your #£,
Mini Project 1if you
knew about

| can clean it up with the knowledge we have gained so far:

borough_data =
pd.DataFrame(borough_data['list'])
.assign(Borough="Haringey")

.assign(dt=lambda d: pd.to datetime(d['dt'], unit='s"))
.assign(agi=lambda d: d['main'].iloc[@]['aqi'])
.drop(columns=['main'])

Producing this DataFrame:

components dt Borough aqi

0 {c0:34714,'n0o:33.53, ‘'no2:41.13, '03: 0.01, ‘so2”: 2020-11-27 Haringey 2
7.51, ‘pm2_5":18.81, ‘pm10’: 21.35, ‘nh3’: 0.25} 00:00:00

1 {’c0’: 293.73, ‘n0: 11.18, ‘n0?2’: 42.16, ‘03: 0.21, ‘'so2”: 2020-11-27 Haringey 2
7.27, ‘pm2_5":15.68, ‘om10:18.17, ‘nh3’: 0.01} 01:00:00

2 {c0:27704,‘no:5.64, ‘'no2:41.81,03:0.32, 'so2: 2020-11-27 Haringey 2
7.33, ‘pm2_5":15.31, ‘pom10: 17.65, ‘nh3’: 0.01} 02:00:00

Flattening the Air Quality Data - Slide 05

Full example Now | need to flatten the components dictionary into columns:
Here is code you could

ha.v? use_d n your & components = pd.json_normalize(borough_data['components'])
Mini Project 1if you

knew about

Json_normalize(): which looks like this:

co no no2 o3 so2 pm2_5 pml0 nh3

0 34714 33.53 4113 0.01 751 18.81 21.35 0.25

1 293.73 1118 4216 0.21 727 1568 1817 0.01

2 27704 564 4181 032 733 15.31 1765 0.01

It's starting to look nice! &

LSE DS105A (2025/26)

Flattening the Air Quality Data - Slide 06

To ‘connect’ both DataFrames, we can use a new function: to combine them:

df haringey = pd.concat([borough data.drop(columns=["'components']), components], axis=1)

which would look like this:

dt Borough aqi co no no2 o3 so2 pm2_5 pmi0 nh3
0 2020-11-27 00:00:00 Haringey 2 34714 33.53 4113 0.01 7.51 18.81 21.35 0.25
1 2020-11-27 01:00:00 Haringey 2 293.73 11.18 42.16 0.21 1.27 15.68 18.17 0.01

2 2020-11-27 02:00:00 Haringey 2 27704 5.64 41.81 0.32 7.33 15.31 17.65 0.01

LSE DS105A (2025/26)

Flattening the Air Quality Data - Slide 07

If you had multiple boroughs, you could create a custom function to do that whole procedure
for you:

def get air_quality data(borough_name):
borough data = pd.read_json(filename, typ='series')

components = pd.json_normalize(borough data['components'])
output = pd.concat([borough data.drop(columns=["'components']), components], axis=1)

output.assign(Borough=borough name)
return output

And then you could call it like this:

[get _air quality data(borough) for borough in boroughs]

pd.concat(df)

LSE DS105A (2025/26)

Using to Expand Nested Lists

Sometimes you want to keep the parent information when expanding a nested list.

df = pd.json_normalize(
data=json_data['albums'],
record _path='collaborators',

meta=['name’', 'year'],
meta_prefix="'album_'

Input: Output:

name role album_name album_year

Lana Del Rey featured Midnights 2022

: "Midnights”, Jack Antonoff producer Midnights 2022

: 2022,
[

: "Lana Del Rey", : "featured"},
: "Jack Antonoff", : "producer"}

LSE DS105A (2025/26)

23 /45

Understanding the Parameters

data: The nested list to expand/normalize.

record path: Path to a key whose value is a list. Each item in that
list becomes one row.

meta: Which fields from the parent object to keep (added to
each row)

meta_ prefix: Prefix to add to meta columns (prevents conflicts)

Critical point: record path must point to a key whose value is a list. The list is what creates multiple
rows. If the value isn’t a list, you'll get an error.

Think of it this way: record path says “make one row per item in this list”, and meta says “but also
include this information from the parent”.
, v
LSE DS105A (2025/26) g

Controlling Depth with

Just so you know: You can limit how many levels of nesting get flattened into columns.

pd.json _normalize(data, max_level=0)

pd.json _normalize(data, max_level=1)

LSE DS105A (2025/26)

Custom Separators

Change the dot notation separator:

pd.json _normalize(data["1list"])

pd.json _normalize(data["list"], sep="_")

When to use: If your column names already contain dots, or you
prefer underscores.

LSE DS105A (2025/26)

What Can Accept?

Works with:

o Dictionaries (nested structures)

o Lists of dictionaries

:

containing dictionaries or lists

df = pd.json _normalize(data _series)

Key point: If you have a DataFrame column containing nested
JSON, pass that Series to

LSE DS105A (2025/26)

27 /45

When to Use json normalize()

Use it when:

0 You have nested JSON from APls
o You need to flatten dictionaries into columns

o You have lists of dictionaries

Don’t use it when:

e X Your data is already flat (just use pd.DpataFrame())

e X You need very custom transformations (loops might be
clearer)

e X The structure is too complex (consider preprocessing first)

P
LSE DS105A (2025/26) g

Mini-Project 2 Preview: TfL API Structure

Here’'s what the JSON from TfL Journey Planner API looks like (you'll see this in your MP2
NBO1):

Challenge: The transport is buried inside , Which is a list inside each . You'll
need to normalize first, then handle the list.

LSE DS105A (2025/26)

Time to put your skills to the test!

LSE DS105A (2025/26)

29/45

30/45

Speed Challenge

Task: Normalize the JSON structure I'm giving you right now into
an informative, analysis-ready DataFrame. Share your solution on
Slack with a screenshot of your DataFrame.

Time: 15 minutes
Prize: Most solution wins a tote bag! T

Criteria for “elegant”:

e Code is clean and readable
e DataFrame structure is useful for analysis

e Solution demonstrates understanding of json normalize() parameters

P
LSE DS105A (2025/26) g

31/45

Coffee Break

After the break:
e OpenSanctions challenge
showcase
S - e Combining DataFrames with
- g pd.concat()
e Handling list columns with
B S T .explode()
Z A e e Reshaping data with .melt()

ahdr
LSE DS105A (2025/26) g

32/45

Other Essential Functions

Beyond json normalize(), here are other reshaping tools. We're showing you these now so you
can recognise them. You’ll see more examples in W08 (databases) and W09 (visualisations).

=% DON’T PANIC! We're showing you these now so you can recognise them. You’'ll see more examples
in B W08 Lecture and ™ W09 Lecture.

v
LSE DS105A (2025/26) @

Combining DataFrames with

When you have multiple DataFrames (e.g., from different locations or time periods):

df all = pd.concat([df locationl, df _location2], ignore_ index=

Before:

location NO?2

Haringey 20.5

location NO2
Enfield 15.3

Key parameter:

indices)

After:

location

NO2

Haringey 20.5

Enfield

15.3

resets the index (0, 1, 2... instead of keeping original

LSE DS105A (2025/26)

34 /45

When You Need concat ()

Use it when:

o You normalized multiple JSON files
o You have data from different sources

0 You need to combine results from different time periods

Example from MP1: Combining Haringey and Enfield data into
one DataFrame

P
LSE DS105A (2025/26) g

Handling List Columns with

Sometimes after normalization, columns contain lists. creates one row per list
element.

df = pd.DataFrame({
'name': ['Alice', 'Bob'],
'emails': [['a@example.com', 'b@example.com'], ['c@example.com']]

1)

df exploded = df.explode('emails"')

Before: After:
hame emails name emails
Alice [‘a@example.com), Alice a@example.com
‘b@example.com’] Alice b@example.com
Bob [‘c@example.com’] Bob c@example.com

LSE DS105A (2025/26)

Combining and

Real-world scenario: normalize first, then explode list columns.

pd.json _normalize(data)

df.explode('properties.sanctions"')

LSE DS105A (2025/26)

Reshaping with : Wide to Long

Transform from “wide” format (many columns) to “long” format (fewer columns, more rows).

df_long = df_wide.melt(
id vars='date',
value_ vars=['NO2', 'PM2.5'],

var_name='pollutant',
value name='concentration'’

Wide format: Long format:
date NO2 PM2.5 date pollutant concentration
2020-01-01 20.5 8.5 2020-01-01 NOZ2 20.5

2020-01-01 PM2.5 8.5

The long format is useful for plotting with seaborn.

LSE DS105A (2025/26)

Why Use ?

Useful for seaborn plots (we’ll see more in W09):

sns.lineplot(data=df long, x='date', y='concentration', hue='pollutant')

Use it when:

o You need to plot multiple variables together

o You want to facet by a variable

o You want to compare values across categories

LSE DS105A (2025/26)

39/45

Quick Reference: When to Use What

Function Use When

json _normalize() Flattening nested JSON from APlIs

pd.concat() Combining multiple DataFrames

.explode() Columns contain lists that need separate
rOwWS

.melt() Converting wide format to long for plotting

P
LSE DS105A (2025/26) g

Wrap-up & Next Steps

=

o AT *
. ., B

. .
. oDl o
: . . |
o
. T -
. . Rl

222222222222222222

411745

Key Takeaways

Today you learned:

1. pd.json _normalize()-Automatically flattens nested JSON
2. record path and meta-Control how nested lists expand

3. pd.concat(), .explode(), .melt()-Reshaping tools you'll see
again in W08 and W09

Remember: Your for loop solutions from MP1 were correct! These
tools make your code simpler, but understanding the data
structure (which you demonstrated) is the most important skill.

P
LSE DS105A (2025/26) g

42145

Tomorrows Lab
In tomorrow’s B WO7 Lab, you'll:

e Practice with the OpenSanctions dataset (similar to today’s
challenge)

e Work through complex normalization scenarios
e Combine multiple reshaping techniques

e Create visualisations from normalized data

ahdr
LSE DS105A (2025/26) @

431745

Mini-Project 2 Preview
Released Week 07, due Week 10 (30% of final grade)

You'll need these skills to:

e Collect data from TfL Journey Planner API (nested JSON)
e Normalize journey data using json normalize()
e Combine data from multiple sources

e Create insights about transport connectivity

ahdr
LSE DS105A (2025/26) @

44 1 45

Model Solution Available

The full model solution from #, Mini-Project 1 (with excellent
reflections) is now available on Nuvolos.

Location: mp1-model-solution/ on Nuvolos

P
LSE DS105A (2025/26) g

451745

Questions?

Resources:

« B Lecture notebook (downloadable on Nuvolos)
« B WOQ7 Lab tomorrow
e (O Post questions in #help on Slack

o i Attend drop-in sessions

a natural next step after mastering data reshaping!

P
LSE DS105A (2025/26) g

http://localhost:8888/2025-2026/autumn-term/weeks/week07/lab.html

